
dramaTTS Documentation

Thies Hecker

Jan 31, 2020

Contents:

1 About 1
1.1 Introduction . 1
1.2 Getting started . 4
1.3 User guide . 6
1.4 API reference . 20

2 Links 31

3 Indices and tables 33

Index 35

i

ii

CHAPTER 1

About

dramaTTS parses scripts (plain text files) for theatre/screen plays and converts them into a multi-voice audio plays
(wave-files).

While the script parsing functionality is provided by the dramaTTS program itself, it relies on external tools for the
audio processing:

• The Festival Speech Synthesis System1 (herein referred to as Festival) is used for speech synthesis

• Sound eXchange (SoX)2 for audio post-processing.

SoX, Festival as well as voices and lexicons for Festival have to be installed in order to create audio output with
dramaTTS (see Getting started).

1.1 Introduction

dramaTTS is intended to provide a free solution for converting a drama / screen play text into a multi-voiced audio
recording using text-to-speech synthesis.

While dramaTTS provides a text parser to identify the speakers of each line/paragraph of the play and a bunch of
configuration options (e.g. for speaker voices) the actual text-to-speech synthesis and audio post-processing relies on
the external tools Festival Speech Synthesis System1 (short festival) and Sound eXchange (SoX)2 (short sox).

dramaTTS reads a text file, stores the voice configuration and schedules separate festival processes to render each
line/paragraph (i.e. a continuous text section read by on speaker) into wave-files, which are afterwards post-
processed/merged using sox.

The basic working principles of dramaTTS shall be illustrated on a short text example - a detailed explanation of the
different configuration options and features can be found in the User guide.

Let’s consider following example text (stored in a plain text file - e.g. example.txt):
1 http://www.cstr.ed.ac.uk/projects/Festival/
2 http://sox.sourceforge.net/Main/HomePage
1 http://www.cstr.ed.ac.uk/projects/Festival/
2 http://sox.sourceforge.net/Main/HomePage

1

http://www.cstr.ed.ac.uk/projects/Festival/
http://sox.sourceforge.net/Main/HomePage
http://www.cstr.ed.ac.uk/projects/Festival/
http://sox.sourceforge.net/Main/HomePage
http://www.cstr.ed.ac.uk/projects/Festival/
http://sox.sourceforge.net/Main/HomePage
http://www.cstr.ed.ac.uk/projects/Festival/
http://sox.sourceforge.net/Main/HomePage

dramaTTS Documentation

1. Scene 1: A demonstration of "drama T T S"

Bob and Mary Ann are having a conversation

BOB

Hi, Mary Ann how are you doing?

MARY ANN

Hi, Bob - I'm doing fine. How are you? (turns around as a loud noise is heard in the
→˓back) What was that?

When this text is imported, dramaTTS will analyze it for different continuous text section of the same content type
(which can for instance be a new scene title or content of a dialogue) and analyze the speaker of this section. I.e. for
the example above dramaTTS will identify following structure:

The different colors indicate different content types - as can be seen the characters/speakers in the play and their line
count is identified and displayed in the table on the bottom right.

As a next step the voices for each character/speaker will be defined.

Afterwards the text can be rendered to audio files.

2 Chapter 1. About

dramaTTS Documentation

The audio output can be played below.

1.1.1 Features

As mentioned above dramaTTS consists of 2 main components: a script parser and a scheduler/configurator for the
audio-rendering.

The script parser features:

• configurable input file formatting (see Working with “Content identifiers”)

• syntax highlighting (identifies different content like new scenes, dialogue lines, narrative descriptions,. . .)

• text string substitutions supporting regular expressions

• some utility functions like sorting speakers according to their number of text lines

The audio-renderering part basically provides a front-end to Festival and SoX with following features supported:

• Altering of Festival voices (pitch, tempo and volume)

• support for multiple CPU cores to accelerate audio rendering (dispatches parallel processes for individual lines)

• using a Festival server for rendering is supported

• some post-processing: normalize all voices, combine audio files (lines -> scenes -> single project file)

• (re-)rendering of individual scenes or speakers

1.1.2 Licenses

dramaTTS, Copyright (c) 2020 Thies Hecker

dramaTTS is free software released under the GPLv3 license (see the full disclaimer in COPYING6 and the LICENSE3

file for details). It is written python and you can download the source code from dramaTTS’s gitlab page7.

dramaTTS is realized using:

PyQt4, Copyright (c) Riverbank Computing Limited

6 https://gitlab.com/thecker/dramatts/blob/master/COPYING
3 https://gitlab.com/thecker/dramatts/blob/master/LICENSE
7 https://gitlab.com/thecker/dramatts
4 https://wiki.python.org/moin/PyQt

1.1. Introduction 3

https://gitlab.com/thecker/dramatts/blob/master/COPYING
https://gitlab.com/thecker/dramatts/blob/master/LICENSE
https://gitlab.com/thecker/dramatts
https://wiki.python.org/moin/PyQt
https://gitlab.com/thecker/dramatts/blob/master/COPYING
https://gitlab.com/thecker/dramatts/blob/master/LICENSE
https://gitlab.com/thecker/dramatts
https://wiki.python.org/moin/PyQt

dramaTTS Documentation

and

setuptools_scm5, Copyright (c) Ronny Pfannschmidt.

While dramaTTS is a standalone application, it is of limited use without Festival and SoX being installed, which
provide the audio rendering (only script parsing including syntax highlighting, etc. is available).

While the Festival application itself and SoX are released under free software licenses as well, specific components,
which are commonly bundled with Festival (i.e. certain lexicons and voices) may be released under non-free licenses.

For instance the festlex-OALD lexicon, which can be found among other files (incl. the source code of the latest
Festival release) on the Festvox 2.5 release page8 lexicon is restricted to non-commercial use only.

The Installing Festival without non-free components section will provide an example for a Festival distribution based
on free components only.

Please see the COPYING6 file in the source code repository for details on licenses and copyright disclaimers of the
individual components.

1.2 Getting started

1.2.1 Installing dramaTTS

You will need a python3 distribution installed and for most convenience you should have either the pip or conda
package manager installed.

On linux you will most likely have python and pip already installed - if not you should be able to install them with
distributions package-manager.

E.g. for debian based system like ubuntu just run:

sudo apt-get python3-pip

or on arch based systems:

sudo pacman -S python-pip

For Windows users I would recommend to install Anaconda or miniconda, which will provide the conda package
manager (make sure to get the python3 - not the python2 - version!).

To install dramaTTS with pip:

pip install dramatts

Note, that on some distributions you may install python2 and python3 in parallel. In such cases you should make
sure, that you not using a pip for your python2 environment to install dramaTTS. Eventually you need to use pip3 as a
command. You can check if you are using the correct pip by calling:

pip --version

To install dramaTTS with conda:

conda install -c thecker dramatts

In both cases pip or conda should download all required dependencies and should be able to launch the program. To
do that just type:

5 https://github.com/pypa/setuptools_scm/
8 http://festvox.org/packed/festival/2.5/

4 Chapter 1. About

https://github.com/pypa/setuptools_scm/
http://festvox.org/packed/festival/2.5/
https://gitlab.com/thecker/dramatts/blob/master/COPYING
https://www.anaconda.com/distribution/#download-section
https://docs.conda.io/en/latest/miniconda.html
https://github.com/pypa/setuptools_scm/
http://festvox.org/packed/festival/2.5/

dramaTTS Documentation

python -m dramatts.dramatts_gui

The GUI should pop up and you can import text files, define roles etc., but you will not be able render audio unless
you have installed Festival (and its components) and SoX.

1.2.2 Installing Festival without non-free components

While many linux distributions include pre-built packages for Festival they often include non-free components like
festlex-OALD. Therefore the safest way to create a free Festival distribution is to compile from source. To form a free
distribution following components could be used:

• Festival 2.5 (main application)

• Edinburgh Speech Tools (EST) - required to compile Festival

• festlex_CMU (lexicon)

• festlex_POSLEX (lexicon)

• festvox_cmu_us_slt_cg (female voice)

• festvox_cmu_us_rms_cg (male voice)

All components can be downloaded at CMU’s (Carnegie Mellon University) Festvox 2.5 release page. The source
code of Festival and EST can also be cloned from the Festvox github page.

To compile the code follow the instructions in the INSTALL file included in Festival.

Note, that more voices can be found at the Festvox page (although some might require e.g. additional lexicons and
thus won’t be working with the selected components above). Additionally voices may also be altered in tempo and
pitch in dramaTTS (by post-processing with SoX) to create more than one speaker per voice.

Building Festival from source is based on the autotools-toolchain - so it shouldn’t be a problem on GNU/linux, but
may be complicated on MS Windows.

Fortunately the eGuideDog team has created compile-instructions for Windows and even provides a Festival 2.5 ver-
sion including precompiled binaries for Windows (which does not include the problematic festlex-OALD lexicon).

In order to use Festival under Windows with dramaTTS you will need to copy the text2wave.bat (see the /utils folder)
to your Festival installation.

Make sure to adjust the paths in text2wave.bat, if you did not install Festival in C:\Festival.

1.2.3 Installing SoX

Under linux you will most likely have a pre-build package for SoX. Building from source is probably not required.

Binaries for Windows can be found on the SoX sourceforge page.

1.2.4 Configuring locations of external tools in dramaTTS

dramaTTS will try to determine the install locations of Festival and SoX automatically. This should most likely work
under linux, if you installed the tools from the official packages (or put the location of the binaries in your PATH).

You can see, if the tools where found in the log windows of dramaTTS. A check will be performed each time dramaTTS
is started - if all tools are configured correctly you will see messages like this in the log.

1.2. Getting started 5

http://festvox.org/packed/festival/2.5/
https://github.com/festvox/
https://sourceforge.net/projects/e-guidedog/files/related%20third%20party%20software/0.3/festival-2.5-win.7z/download
https://sourceforge.net/projects/e-guidedog/files/related%20third%20party%20software/0.3/festival-2.5-win.7z/download
https://gitlab.com/thecker/dramatts/tree/master/utils
https://sourceforge.net/projects/sox/files/sox/14.4.2/

dramaTTS Documentation

Under windows you will most likely have to define the tool locations manually.

To do that, just go to the Adjust program preferences in the dramaTTS GUI and specify the file locations.

If you used the Festival version provided by the link above the pre-compiled binaries are located in:

..Festival\src\main

After you specified a new tool location, you should save the preferences and restart dramaTTS to make the changes
become effective.

1.3 User guide

1.3.1 GUI layout

The GUI (Graphical User-Interface) consists of 3 main elements:

• project buttons

• work area

• log area (console output)

6 Chapter 1. About

dramaTTS Documentation

Project buttons

The project buttons will always be shown on top and allow to create a new project, open a saved project
or save a project at any time.

Work area

The work area contains the tabs for the different work steps - e.g. for importing and viewing a script,
defining options for the audio rendering, etc.

The individual tabs will be explained in more detail in the chapters below.

Log

The log shows the console output of the dramaTTS sub processes. It can provide valuable information
like warning and error messages or the progress of the rendering process.

1.3. User guide 7

dramaTTS Documentation

1.3.2 Input format basics

Although dramaTTS allows to configure the behavior of the script parser to support different formatting styles of the
text source, it will always distinguish 5 different categories of content:

• An indicator for a new scene (content type ‘SceneTitle’)

• an indicator for a dialogue - which will be subdivided into:

• a speaker name which starts the dialogue (‘DialogueIndicator’)

• lines of dialgue (‘DialogueContent’)

• comments inside a dialgoue (‘InlineComment’)

• narrative description (‘NarrativeDescription’)

These types of content shall be illustrated based on the default dramaTTS format. Note, that this behavior can be
adjusted (see Working with “Content identifiers”).

SceneTitle

A new scene is typically indicated by a single line with a scene number and a scene title text. In the default
format each line starting with a number followed by a dot is assumed to indicate a new scene - e.g.:

23. A new scene

Scene titles will be read by the narrator.

Dialogue

A dialogue is typically indicated by a line giving only the speaker name, followed by dialogue content,
which is terminated by e.g. the next double line break. In the default formatting a text section is assumed
be a dialogue, if a line consisting only of UPPER CASE letters (for the speaker name) is encountered.
The dialogue will end after the second blank line is encountered - e.g.:

BOB

Hi, I am Bob and this line is the my dialogue.
This line is part of my dialogue as well. (sighs) I guess it's time to end
→˓my dialogue now.

Bob's dialogue was terminated by the second an empty line, which makes this
→˓line belong to the narrator.

The parser will first identify the complete dialogue and then start to search for the ‘DialogueIndicator’ and
‘InlineComments’ within the dialogue. In the default formatting the ‘DialogueIndicator’ is defined by a
single line with only UPPER CASE letters (i.e. the first part of the identifier for the complete dialogue)
and ‘InlineComment’s are defined by any words encapsulated in parenthesis. Thus the parser will interpret
the example above as follows:

DialogueIndicator (read by the Narrator) BOB

DialogueContent (read by the speaker - in this case BOB) Hi, I am Bob and this line is the
my dialogue. This line is part of my dialogue as well.

InlineComment (read by the Narrator) (sighs)

DialogueContent (read by BOB again) I guess it’s time to end my dialogue now.

NarrativeDescription

8 Chapter 1. About

dramaTTS Documentation

Everything, that the parser did not identify as being a ‘SceneTitle’ or any part of ‘Dialogue’ will be
assigned to the content type ‘NarrativeDescription’ and be read by the narrator - e.g. the last line in the
example above.

1.3.3 Handling text files

If your script/text file is in accordance with the default dramaTTS format, you can go direcly to the “Script” tab and
start importing your text file.

The script tab provides a viewer for the imported script, a table which displays the properties of each line (or more
precisely each paragraph), an overview of the characters found in the script (including their line counts) and a couple
of buttons for import/export.

View script parser results

The script lines viewer shows the result of the import. It uses color highlighting to distinguish the different types of
content:

• black: Narrative descriptions (NarrativeDescription)

• red: New scene indicator (SceneTitle)

• green: A speaker name - i.e. a dialogue indicator (DialogueIndicator)

• blue: Text of a dialogue line (DialogueContent)

• purple: A narrator comment inside a dialogue - e.g. “he turns to . . . ” (InlineComment)

Note that you can switch the text rendering mode between “Original text” and “Parsed lines”. The “Parsed lines”
option basically puts the name of the speaker at the beginning of each line.

1.3. User guide 9

dramaTTS Documentation

If you click on a line in the viewer you can find more details on it in the “Line properties” table (see below).

Line properties table

The line properties table shows details on the properties of the selected line/paragraph including the content type (as
described above), the start and end position in the text file, the scene the line belongs to, the speaker of the line,. . .

You can also modify the line properties by changing the property values in the table and clicking the “Update Line
properties” button.

Warning: If you re-import your script the changes made to the line properties will be lost. Thus this option
should only be used as a final step in your editing process. A better solution to introduce changes (if you do not
want to modify the source text directly) is to use the options explained in the Working with “Content identifiers”
or Substitutions chapters.

Characters table

The characters table gives an overview of the characters/roles identified by the script parser. The characters are sorted
according to their line count.

If you click the “Add speakers for characters” button, a new speaker (with the default speaker settings - see Adjust
program preferences) will be added for each character which does not already have speaker settings defined.

Importing and exporting parsed lines

To start a new project you would usually “Import a script from .txt” - i.e. a plain text source. dramaTTS also allows to
export and import the parsed lines (JSON-format).

Note: Importing/exporting the parsed lines is usually not required as the same information is stored inside the project
file as well.

The “Refresh from .txt” button comes handy, if you have already imported a text file and either made modifications
to the text file directly or to the content identifiers (see Working with “Content identifiers”) or substitutions (see
Substitutions). Pressing the button will re-import the text file (applying the current parser configurations).

1.3.4 Working with “Content identifiers”

“Content identifiers” can adjust the behavior of the script parser.

The content identifiers are RegEx (Regular Expressions) patterns, which are used to identify a text section - 4 types of
identifiers are defined:

• SceneTitle

• Dialogue

• SpeakerName

• InlineComment.

10 Chapter 1. About

dramaTTS Documentation

Note: The identifier ‘SpeakerName’ is used to assign the content type ‘DialogueIndicator’. These names will most
likely be harmonized in a future version.

The behavior of the content identifiers was already explained in the Input format basics chapter. The list below shows
the order of events within the text process.

1. Perform substitutions - see Substitutions

2. Search and extract SceneTitle contents

3. Search and extract Dialogue contents - this is the complete dialogue including the speaker name (SpeakerName),
and dialog lines (including InlineComments)

4. Within each Dialogue it will extract the DialogueIndicator as defined by the SpeakerName pattern and split it
from the rest of the Dialogue

5. In the remaining part of the Dialogue it will search for InlineComments and assign positive matches as In-
lineComment and text parts not matched as DialogueContent

Content identifiers can be configured in the “Content identifiers” tab.

The “content identifiers” tab basically consists of a tree view for the “assigned identifiers”, a list of “available identi-
fiers” and an explanation of the selected “identifier”.

Assign content identifiers

The “Assigned content identifiers” view shows which content identifier has been selected for the different types of
content in the current project. You can change the assigned identifiers by selecting the identifier type in the tree-view
+ an available identifier from the list and clicking the “Assign” button.

1.3. User guide 11

dramaTTS Documentation

Browse available content identifiers

The “Available identifiers” list shows all content identifiers available. You can use the buttons below to add new
identifiers, remove identifiers and import or export the complete list of identifiers.

Note: Changes made to the content identifiers will not persist through the sessions. In order to use a custom content
identifier in a different project you should export the identifiers and import them to the new project. Content identifiers
configurations are also stored in the project files.

Identifier parameters

Identifier parameters are shown to explain how the content identifiers work. To explain how the RegEx
patterns works the “info” and an “example” field is available.

If you create your own identifiers you should always add an example. When pressing the “Update pa-
rameters” button dramaTTS will perform a check, to see if your example is matched by the RegEx and
display the result in the log.

Note: Although lots of different formats can be identified using (more or less complex) identifiers, the process still
relies on having consistency throughout the text document and being “machine” distinguishable. E.g. if a speaker name
(as a DialogueIndicator) and a narrative comment share the format (“\nBob Miller\n” vs. “\nEnter Bob\n” - where \n
denotes a line break) the defined Regex might find “false” matches. Hence in some cases it makes sense make some
changes to the document before importing or use substitutions (see Substitutions) to define some replacements (e.g.
you could add some special characters to common director instructions like “Enter . . . ” to distinguish them from
character names)

1.3.5 Substitutions

Substitutions provide the possibility to replace words in the text before the script parser is started. Substitutions can
be defined in the “Substitutions” tab.

12 Chapter 1. About

dramaTTS Documentation

The substitutions consist either of a simple search text or a RegEx pattern. In both cases a substitution text has to be
defined as a replacement.

Defined substitutions in the table can be modified and saved by clicking the “Update entries” button. The “Add entry”
and “Remove entry” buttons can be used to extend the list or remove the selected substitution. Substitutions can also
be exported and imported to a json-file to be shared between projects. You can also define a default substitutions file,
which is loaded on startup - see Adjust program preferences.

1.3.6 Configure speakers

In order to give a character a distinctive voice, you will have to define its speaker settings. Speakers can be added,
modified and ex- or imported in the “Speakers” tab.

1.3. User guide 13

dramaTTS Documentation

Browsing, adding and removing speakers

The list box in the top left corner shows the defined speakers (if you have clicked the “Add speakers” button in the
script tab - you should see all characters defined in the play here). With the buttons below the speaker list speakers can
be removed or new speakers can be added.

Note: The speaker name must match the character name (case sensitive) - see also characters table in Characters
table. Lines of a character, who does not have a speaker defined, will be read by the “Narrator”.

You can also export and import the speaker definition’s.

Speaker parameters

The speaker parameters table shows the parameters (voice name, pitch, tempo and volume) for the selected speaker.
You can change the parameters and use “Update speaker parameters” button to save the changes.

Note: Although you can define the volume for each speaker to compensate differences in the loudness of individual
voices, a more convenient way is to select the “normalize audio” option (see Render audio), which will automatically
adjust the volume in the rendered audio files to a predefined dB-level.

14 Chapter 1. About

dramaTTS Documentation

Play a test phrase

Below the speaker parameters you have a text field to define a test phrase. By clicking on the “Play test phrase” button
the test phrase will be rendered with the currently defined speaker parameters.

Note: Rendering the test phrase may take a while for long test phrases and of course you need festival and SoX being
installed and correctly configured (check the console output on start-up or see Render audio).

Convert a speaker to a comment

The “speaker to comment” button allows to automatically add a substitution for the selected speaker name. This can be
useful, if a line has mistakenly been identified as a speaker name. E.g. in the example below a text line containing only
the word “Retires” has been identified as a speaker and been added by the “Add speakers” method (since it matches
the identifier for a speaker name).

By selecting the wrong “speaker” and clicking on the “Convert speaker to comment” button, the “speaker” will be
removed from the speaker list and simultaneously a substitution will be created by pre-/appending the prefixes/suffixes
to the search and substitution string will be added to the substitutions list - in the example above this will result in:

If the script is now re-imported “(Retires)” will not be treated as a speaker (assuming that Speaker names do not allow
parenthesis in this case).

1.3. User guide 15

dramaTTS Documentation

1.3.7 Render audio

To render the script to audio files go to the “Render” tab. Here you can configure the options for the audio renderer
and start the rendering process.

The render tab also shows, if the festival and SoX applications are configured correctly. If true, you will see the version
number of the applications displayed in the text boxes on the top.

Following options can be defined for the audio renderer:

Output files and folders

Before you start rendering it is mandatory to define an output folder to store the generated wave-files.

Inside the output folder dramaTTS will create a sub-folder for each scene - called “scene_XXX” (where XXX will be
replaced with the scene numbers e.g. “scene_003”).

16 Chapter 1. About

dramaTTS Documentation

In the rendering process a wave-file for each line/paragraph will be created. The wave-files will be named
“scene_XXX_line_YYY.wav” - e.g. “scene_003_line_002.wav”. After having rendered all lines of all scenes the
individual wav-files will be merged to a single wave file for each scene - i.e. at the end of the rendering process you
will see e.g. a “scene_003.wav” in the output-folder.

Note: After the render is completed you will actually have the recording in two versions - a) the scene files and b) the
individual line files in scene sub-folders. You can of course delete the scene sub-folders - however this will prevent
certain post-processing and corrective actions (see below) - so it is recommended to keep the files in the sub-folders
as long as you plan to make modifications to the project.

Configure render options

Combine output to one file

This option will - additionally to the scene and line files - create a single wave-file for the whole play,
which will be stored on the same level as the output-folder and also have the name of the output-folder
appended by a “.wav”

First scene/last scene spin boxes

With these spin boxes you can limit the rendering process to a certain range of scenes - e.g. useful if you
found a mistake in a specific scene and do not want to render the complete script again.

Note: Regarding the first scene

If the first line in the text source is not a ‘SceneTitle’, dramaTTS will create a new scene named “Preface”
and assign all text up to the first SceneTitle to this scene (scene number 0). In this case the first real scene
in the text would actually be scene number 1. This situation is the most common scenario.

If however the text starts directly with a SceneTitle, then this first real scene will be scene number 0.

Regarding the last scene

Consider the numbering issues mentioned above as well. Setting the last scene to 0 means to render from
the start scene to the end of the play.

Render only one speaker

If the “Render only one speaker” option is checked you may select any of the characters found in the play
and only the lines belonging to this character will rendered. This is useful, if you are unhappy with the
rendered audio output of a specific speaker and want re-rendering the lines of the speaker with adjusted
speaker settings. This option can also be used in combination with the scene range limiter described
above.

Note: If you want to use this option to re-render the lines of a specific speaker, you must not delete the
individual line wave files in the scene sub-folders. After having re-rendered the lines of a specific speaker
all scene files will be re-build as well.

Normalize audio & dB level

If this option is checked the individual line files will automatically be normalized to the dB level defined
by the dB level spin box.

1.3. User guide 17

dramaTTS Documentation

Note: You can also normalize the files as a post-processing step (see below).

CPU threads

dramaTTS supports multi-processing for rendering the audio output, which can significantly reduce render
times. In order to achieve fast render times you should select as many threads as (virtual) CPU cores you
can spare.

Render times can vary significantly depending on your system, the length of the text and the voices used.
To render a complete typical drama/screen play script with the default voices a core i5 CPU running on 4
threads might easily require 1-2 hours of render time.

Use festival server

The festival application can also work in a client-server mode - see the festival documentation1 for details.

Note: If this option is selected dramaTTS will assume, that a festival server is running on the specified
hostname (which can also be an IP-address) and port. To use server option the festival_client application
has to be configured correctly - see Adjust program preferences.

Starting and stopping the render process

The “Start render” button starts the rendering process.

The progress of the rendering process will be displayed in the log.

When you press the “Cancel Render” button the program will cancel all lines, which have not yet been scheduled for
rendering. However the currently running threads will not be killed immediately. The program will wait until they
have finished their rendering tasks, which might take a while. A status message about the remaining running threads
will be shown in the log.

Post processing

dramaTTS currently only supports limited post-processing options.

The “normalize audio” and “combine to one file” buttons will perform the same actions as described for the corre-
sponding render options above.

The “remove temp. files” deletes the line wave files. Note that this prevents further post-processing and re-rendering
strategies.

1.3.8 Adjust program preferences

The preferences tab provides some configuration options and default settings.

1 http://www.cstr.ed.ac.uk/projects/festival/manual/festival_28.html#SEC129

18 Chapter 1. About

http://www.cstr.ed.ac.uk/projects/festival/manual/festival_28.html#SEC129
http://www.cstr.ed.ac.uk/projects/festival/manual/festival_28.html#SEC129

dramaTTS Documentation

Executable paths

Here you can defined the path to the required external applications for audio rendering - i.e. festival and
its components (text2wave and the festival_client script) and SoX.

If the tools are added to your system PATH, dramaTTS should be able to determine the file locations
automatically.

Default render options

For some render settings presets can be defined, which will be used when creating a new project (for
details on the meaning of these options see the Render audio chapter).

Speaker options

If you check the “Import speakers” option, you can define a file with exported speaker settings, which will
be imported on start-up.

You can also define the default configuration for the “Narrator” and the “default speaker”. The “default
speaker” defines the initial speaker settings, when a speaker is added (via the “Add speakers” or “Add
speaker” buttons).

Substitutions

Analogous to the “Import speakers” option above, but for substitutions.

With the “Save preferences” button you can save the current preferences to dramaTTS’s config file (which is located
in the current users home folder and named “.dramatts_config.json” - if you can’t find it, you might need to change
your file browsers view settings to show hidden files).

You can also export and import the preferences to another file.

1.3. User guide 19

dramaTTS Documentation

1.4 API reference

This chapter contains the API reference for the dramatts.core and dramatts.voices modules.

1.4.1 ScriptParser

class dramatts.core.ScriptParser(input_file=None, start_line=0, end_line=None, substitu-
tions=None)

A parser to identify content types inside a text file

Parameters

• input_file (pathlib.Path) – Path to text file

• start_line (int) – First line to import

• end_line (int) – Last line to import - None means last line of text file

• substitutions (list) – A list of text substitutions - details see Attributes

filename
Path to text file

Type pathlib.Path

start_line
First line to import

Type int

end_line
Last line to import - if None last line of text file

Type int

substitutions
A list of dictionaries with keys:

• ‘search_text’(str): Text or RegEx pattern to search for

• ‘subst’(str): Replacement text

• ‘regex’(bool): If true - assume ‘search_text’ is a RegEx

• ‘comment’(str): Additional information on this substitution

Type list

text
Raw text of the imported file

Type str

characters
List of characters in the play

Type list

lines_list
List of dictionaries for each line/paragraph identified in the text - dict keys:

• ‘start’(int): index of first character inside the text

• ‘end’(int): index of last character inside the text

20 Chapter 1. About

dramaTTS Documentation

• ‘content’(str): Content of the line/paragraph

• ‘content_type’(str):

– ‘SceneTitle’,

– ‘DialogueIndicator’,

– ‘DialogueContent’,

– ‘InlineComment’

– ‘NarrativeDescription’

• ‘speaker’(str): Name of speaker for this line - e.g. a character’s name

Type list

content_identifiers
List of dictionaries - for each content identifier with keys:

• ‘name’(str): Name of the identifier

• ‘pattern’(str): RegEx pattern

• ‘info’(str): Explantation of the content identifier

• ‘example’(str): An example matching the pattern

Type list

ident_assigments
Assignment of different identifier types to a content identifier - valid keys are: ‘SceneTitle’, ‘Dialogue’,
‘SpeakerName’ and ‘InlineComment’ - the value must be a content identifier dictionary (e.g. an element
of the content_identifiers list)

Type dict

check_content_identifiers()
Checks the content identifiers patterns vs. the example

Returns True if example matches pattern

Return type bool

export_identifiers(filename)
Exports the content identifiers

export_parsed_lines(filename)
Exports the parsed lines

export_substitutions(filename)
Exports the substitutions

get_characters_from_parsed_lines()
Gets characters list from parsed lines and assign it to the characters attribute

Returns None

get_filtered_valid_lines(first_scene=0, last_scene=None, speaker=None)
Filters the valid_lines_list acc. to scene range and speaker name

Parameters

• first_scene (int) – Start scene

1.4. API reference 21

dramaTTS Documentation

• last_scene (int) – End scene - if None the last scene of the play will be assumed

• speaker (str) – Name of speaker to limit filter to

Returns List of dicts - same format as valid_lines_list, but filtered to scene range and/or speaker

Return type list

get_lines_per_character()
Counts the lines/paragraphs for each speaker

Returns key = character name - value = no. of lines, sorted by the number by line count (de-
scending)

Return type dict

identifier_names
Returns a list of available identifier names

Type list

import_identifiers(filename)
Imports the list of content identifiers from a file

import_parsed_lines(filename)
Imports parsed lines from json

import_substitutions(filename)
Imports the list of substitutions from a file

parse_lines(filename=None)
Parses the specified text file and assign result to lines_list attribute

Parameters filename (pathlib.Path) – Path to textfile, if None the filename attribute
will be used (if defined)

Returns The value of the lines_list attribute

Return type list

scene_count
Number of scenes in the script

Type int

scenes_titles
List of the scene titles

Type list

substiute_text(text)
Substitutes elements in text (supports regex as defined by python re module)

Parameters text (str) – Text to check/modify

Returns Modified text

Return type str

valid_lines_list
Only non-empty lines/paragraphs of the lines_list attribute

Note: Has additional key-value pairs cmp. lines_list:

• ‘scene_no’(int): Scene the line/paragraph belongs to

22 Chapter 1. About

dramaTTS Documentation

• ‘scene_line_no’(int): Line number inside the side (where 0 is always the SceneTitle).

Type list

1.4.2 AudioRenderer

class dramatts.core.AudioRenderer(voices=None, cpu_threads=4)
This class provides configuration of the audio rendering and wrappers to launch the external tools (festival, sox)
with predefined parameters for speech synthesis and post-processing

Parameters

• voices (dict) – Dictionary with key = speaker name, value is a VoiceConfig object

• cpu_threads (int) – Number of parallel CPU threads to use for rendering

voices
Dictionary with key = speaker name, value is a VoiceConfig object

Type dict

cpu_threads
Number of parallel CPU threads to use for rendering

Type int

norm_level
DB level to use for normalizing audio

Type int

sox_path
Path to the SoX application

Type pathlib.Path

festival_path
Path to the festival application

Type pathlib.Path

festival_client_path
Path to the festival_client application

Type pathlib.Path

text2wave_path
Path to the text2wave script

Type pathlib.Path

installed_festival_voices
List of voice names installed for festival

Type list

external_tools
A dictionary with the configuration setting for the external tools - keys: ‘festival’, ‘festival_client’, ‘sox’
and ‘text2wave’. Each tool’s key holds another dictionary with the keys:

• ‘path’(pathlib.Path): Path to application

• ‘version’(str): Version string

1.4. API reference 23

dramaTTS Documentation

• ‘installed’(bool): True if the tool was found to be working

Type dict

use_festival_server
True if server should be used instead of local render via text2wave

Type bool

festival_server_name
Hostname or IP-Address of the festival server

Type str

festival_server_port
Port number of the server

Type int

invalid_voices
List of speaker names with invalid configuration (e.g. defined festival voices not installed) - a dict for each
invalid speaker with keys:

• ‘name’(str): Name of the speaker

• ‘index’(int): Position of the speaker in the voices attribute

• ‘params’(list): A list of invalid parameter names - e.g. [‘voice_name’]

Type list

check_component(path, tool_name, test_args, answer_str, answer_version=False)
Checks an individual external tool by invoking the tool with defined test arguments and validating against
an expected answer

Parameters

• path (pathlib.Path) – Path to executable (incl. executable name)

• tool_name (str) – Name of tool

• test_args (tuple) – Command line arguments to use for functions test (e.g. to get
version string)

• answer_str (str) – A required str in the answer of the command line invocation with
test_args

• answer_version (bool) – Extract version str form

Returns with keys: path, version and installed.

Return type dict

check_installed_components()
Checks if external components are installed and updates the external_tools attribute

Returns: None

check_voices()

Checks the voice parameters for correctness (e.g. voice installed) and assigns invalid voices to the
invalid_voices attribute

Returns List of dicts with speaker name, index and invalid parameter in self.voices

24 Chapter 1. About

dramaTTS Documentation

Return type list

create_voices_dict()
Create a dictionary with all voices

export_voices(filename)
Exports all voices to a json file

static get_ext_tool_path(exec_name)
Get path to external executable

Parameters exec_name (str) – Name of the application/executable

Returns Path to executable if found - else None

Return type str

get_festvial_voices()
list: List of the installed festival voices (str)

static get_tool_feedback(command_name, path=None, cmd_args=(’–version’,))
Calls an external tool with certain arguments and returns feedback (for testing functionality)

Parameters

• command_name (str) – Name of command to check

• path (pathlib.Path) – Path to the executable, if None see below

• cmd_args (tuple) – Command line arguments to pass to tool

Note: If path is none the command will be invoked only with the commnand_name - assuming the
executable’s location is added to the PATH environment variable.

import_voices(filename)
Imports voices from a json file

play_audio_test(voice, text)
Plays a test text for the current voice

Parameters

• voice (VoiceConfig) – voice configuration

• text (str) – Text for testing

read_voices_dict(voices_dict)
Fills voices attribute dict with VoiceConfig objects defined by values from a dictionary

Parameters voices_dict (dict) – Dictionary with key for each speaker name. Each
speaker key holds another dictionary with voice parameters with following keys: -
‘voice_name’(str): Festival voice name - ‘user_pitch_shift’(int): Pitch shift offset -
‘user_tempo’(float): Tempo factor - ‘user_volume’(float): Volume factor

render_audio(voice, text, filename, normalize=False)
Renders a specific script line (or part of a line) into an audio file

Parameters

• voice (str) – Name of speaker

• text (str) – Text to render

• filename (pathlib.Path) – Path object

1.4. API reference 25

dramaTTS Documentation

• normalize (bool) – If true normalize the sound level

1.4.3 ProjectManager

class dramatts.core.ProjectManager(script_parser, audio_renderer, output_folder=None)
Manager for a dramaTTS session

Parameters

• script_parser (ScriptParser) – ScriptParser object

• audio_renderer (AudioRenderer) – AudioRenderer object

• output_folder (pathlib.Path) – Folder for the generated audio files

project_filepath
Path to the project file

Type pathlib.Path

script_parser
ScriptParser object

Type ScriptParser

audio_renderer
AudioRenderer object

Type AudioRenderer

output_folder
Folder for the generated audio files

Type pathlib.Path

speaker_to_render
Speaker name, if output for a specific speaker only shall be rendered (otherwise None)

Type str

normalize
If true the audio output will be normalized

Type bool

combine
If true the files for the individual scenes will be combined to single file too

Type bool

start_scene
First scene to render

Type int

end_scene
Last scene to render - if None the last scene in the play will be assumed

Type int

digits_scene_no
Number of digits for zero padding in the scene folders/file names

Type int

26 Chapter 1. About

dramaTTS Documentation

digits_line_no
Number of digist for zero padding of the line numbers in the wave files

Type int

preferences
Dictonary to store the program preferences - see create_prefs_dict method for details

Type dict

add_speakers_for_characters()
Adds default speaker for each character found by the script parser, who does not alerady have a speaker
assigned

combine_audio(input_path=None, output_path=None)
Merges all files in one directory (excluding subdirs) into a single file

Parameters

• input_path (pathlib.Path) – Folder name of files to combine (defaults to out-
put_folder)

• output_path (pathlib.Path) – Filename of combined file (defaults to out-
put_folder + .wav)

convert_speaker_to_comment(speaker_name, from_prefix=’\n’, from_suffix=’\n’,
to_prefix=’\n(’, to_suffix=’\n)’)

Deletes and entry in the speakers dictionary and creates a substitution adding prefixes and suffixes

Parameters

• from_prefix (str) – Prefix before speaker_name to include in search text

• from_suffix (str) – Suffix after speaker_name to include in search text

• to_prefix (str) – Prefix before speaker_name to include in substitution

• to_suffix (str) – Suffix after speaker_name to include in subsitution

Notes

• This is useful, if the parser misunderstood director instructions for speaker names (DialogueIndicator)

create_prefs_dict()
dict: Creates a dictionary with the preferences settings

create_project_dict()
dict: Creates a dictionary representation of the current project settings

default_config_path
Default config path

Type pathlib.Path

get_line_no_str(line_no)
str: Returns a string representation of the line number

get_scene_folder_path(scene_no)
pathlib.Path: Returns the path to a scene subfolder

get_scene_no_str(scene_no)
str: Returns a string representation of the scene number

1.4. API reference 27

dramaTTS Documentation

load_preferences(filepath=None)
Loads the preferences from a json file

Parameters filepath (pathlib.Path) – If none the default config file (see de-
fault_config_path property method)

load_project(filepath=None)
Loads a project from a file

Parameters filepath (pathlib.Path) – path to file name (if None self.project_filepath
will be used)

normalize_audio()
Normalizes all audio segments and rebuilds files for each scene

process_prefs_dict(prefs)
Processes the preferences dict (see create_prefs_dict) and assings values to internal variables

process_project_dict(project)
Reads a project dict and assigns to internal variables

render_line_from_dict(line_dict)
Renders a line based on the dictionary provided by the script parser

Parameters line_dict (dict) – An element of the list returned by Script-
Parser.get_filtered_valid_lines method

Returns Returns the argument

Return type dict

render_script()
Renders the script into audio files

save_preferences(filepath=None)
Saves the preferences to a json file

Parameters filepath (pathlib.Path) – If none the default config file will be used (see
default_config_path property method)

save_project(filepath=None)
Save the complete project

Parameters filepath (pathlib.Path) – path to file name (if None self.project_filepath
will be used)

1.4.4 Helper functions

dramatts.core.handle_getstatusoutput(commandpath, cmd_args)
Returns the output from subprocess.getstatusoutput taking into account the os.name

Parameters

• commandpath (pathlib.Path) – Path to executable including executable name

• cmd_args (tuple) – Tuple with command line arguments (str) to pass to the programm

dramatts.core.convert_version_string(version_str)
Converts a version string into integer values for major, minor, patch

Parameters version_str (str) – Version string like ‘1.0.0’ or ‘1.0’

Returns Tuple of int values (major, minor, patch). Patch will be None, if two digit version_str
provided.

28 Chapter 1. About

dramaTTS Documentation

Return type tuple

1.4.5 VoiceConfig

class dramatts.voices.VoiceConfig(voice_name=’cmu_us_slt_cg’, pitch_shift=0, tempo=1.0,
volume=1.0, speaker_name=None)

Creates a voice config that allows changing pitch and tempo of the festival voices

Parameters

• voice_name (str) – A festival voice name

• pitch_shift (int) – SoX pitch shift value (+-100ths of a semitone)

• tempo (float) – SoX tempo factor (1.0 = no change)

• volume (float) – Volume factor (1.0 = no change, >1.0 = louder)

create_voice_dict()
Creates a dictionary representation of the voice config

Returns

Dictionary representation of voice config with keys:

• ’voice_name’(str): Name of the voice in festival

• ’user_pitch_shift’(int): Pitch shift in 1/100th of semi-tone

• ’user_tempo’(float): Tempo factor

• ’user_volume’(float): Volume factor

Return type dict

pitch_shift
Final pitch shift

Type int

tempo
Final tempo

Type float

update_parameters(voice=None, pitch_shift=0, tempo=1.0, volume=1.0)
Updates the voice parameters

Parameters

• voice (str) – Name of the voice in festival

• pitch_shift (int) – Pitch shift in 1/100th of semi-tone

• tempo (float) – Tempo factor

• volume (float) – Volume factor

volume
Final volume

Type float

1.4. API reference 29

dramaTTS Documentation

30 Chapter 1. About

CHAPTER 2

Links

31

dramaTTS Documentation

32 Chapter 2. Links

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

33

dramaTTS Documentation

34 Chapter 3. Indices and tables

Index

A
add_speakers_for_characters() (dra-

matts.core.ProjectManager method), 27
audio_renderer (dramatts.core.ProjectManager at-

tribute), 26
AudioRenderer (class in dramatts.core), 23

C
characters (dramatts.core.ScriptParser attribute), 20
check_component() (dramatts.core.AudioRenderer

method), 24
check_content_identifiers() (dra-

matts.core.ScriptParser method), 21
check_installed_components() (dra-

matts.core.AudioRenderer method), 24
check_voices() (dramatts.core.AudioRenderer

method), 24
combine (dramatts.core.ProjectManager attribute), 26
combine_audio() (dramatts.core.ProjectManager

method), 27
content_identifiers (dramatts.core.ScriptParser

attribute), 21
convert_speaker_to_comment() (dra-

matts.core.ProjectManager method), 27
convert_version_string() (in module dra-

matts.core), 28
cpu_threads (dramatts.core.AudioRenderer at-

tribute), 23
create_prefs_dict() (dra-

matts.core.ProjectManager method), 27
create_project_dict() (dra-

matts.core.ProjectManager method), 27
create_voice_dict() (dra-

matts.voices.VoiceConfig method), 29
create_voices_dict() (dra-

matts.core.AudioRenderer method), 25

D
default_config_path (dra-

matts.core.ProjectManager attribute), 27
digits_line_no (dramatts.core.ProjectManager at-

tribute), 26
digits_scene_no (dramatts.core.ProjectManager

attribute), 26

E
end_line (dramatts.core.ScriptParser attribute), 20
end_scene (dramatts.core.ProjectManager attribute),

26
export_identifiers() (dra-

matts.core.ScriptParser method), 21
export_parsed_lines() (dra-

matts.core.ScriptParser method), 21
export_substitutions() (dra-

matts.core.ScriptParser method), 21
export_voices() (dramatts.core.AudioRenderer

method), 25
external_tools (dramatts.core.AudioRenderer at-

tribute), 23

F
festival_client_path (dra-

matts.core.AudioRenderer attribute), 23
festival_path (dramatts.core.AudioRenderer

attribute), 23
festival_server_name (dra-

matts.core.AudioRenderer attribute), 24
festival_server_port (dra-

matts.core.AudioRenderer attribute), 24
filename (dramatts.core.ScriptParser attribute), 20

G
get_characters_from_parsed_lines() (dra-

matts.core.ScriptParser method), 21
get_ext_tool_path() (dra-

matts.core.AudioRenderer static method),
25

get_festvial_voices() (dra-
matts.core.AudioRenderer method), 25

35

dramaTTS Documentation

get_filtered_valid_lines() (dra-
matts.core.ScriptParser method), 21

get_line_no_str() (dra-
matts.core.ProjectManager method), 27

get_lines_per_character() (dra-
matts.core.ScriptParser method), 22

get_scene_folder_path() (dra-
matts.core.ProjectManager method), 27

get_scene_no_str() (dra-
matts.core.ProjectManager method), 27

get_tool_feedback() (dra-
matts.core.AudioRenderer static method),
25

H
handle_getstatusoutput() (in module dra-

matts.core), 28

I
ident_assigments (dramatts.core.ScriptParser at-

tribute), 21
identifier_names (dramatts.core.ScriptParser at-

tribute), 22
import_identifiers() (dra-

matts.core.ScriptParser method), 22
import_parsed_lines() (dra-

matts.core.ScriptParser method), 22
import_substitutions() (dra-

matts.core.ScriptParser method), 22
import_voices() (dramatts.core.AudioRenderer

method), 25
installed_festival_voices (dra-

matts.core.AudioRenderer attribute), 23
invalid_voices (dramatts.core.AudioRenderer at-

tribute), 24

L
lines_list (dramatts.core.ScriptParser attribute), 20
load_preferences() (dra-

matts.core.ProjectManager method), 27
load_project() (dramatts.core.ProjectManager

method), 28

N
norm_level (dramatts.core.AudioRenderer attribute),

23
normalize (dramatts.core.ProjectManager attribute),

26
normalize_audio() (dra-

matts.core.ProjectManager method), 28

O
output_folder (dramatts.core.ProjectManager at-

tribute), 26

P
parse_lines() (dramatts.core.ScriptParser method),

22
pitch_shift (dramatts.voices.VoiceConfig attribute),

29
play_audio_test() (dramatts.core.AudioRenderer

method), 25
preferences (dramatts.core.ProjectManager at-

tribute), 27
process_prefs_dict() (dra-

matts.core.ProjectManager method), 28
process_project_dict() (dra-

matts.core.ProjectManager method), 28
project_filepath (dramatts.core.ProjectManager

attribute), 26
ProjectManager (class in dramatts.core), 26

R
read_voices_dict() (dra-

matts.core.AudioRenderer method), 25
render_audio() (dramatts.core.AudioRenderer

method), 25
render_line_from_dict() (dra-

matts.core.ProjectManager method), 28
render_script() (dramatts.core.ProjectManager

method), 28

S
save_preferences() (dra-

matts.core.ProjectManager method), 28
save_project() (dramatts.core.ProjectManager

method), 28
scene_count (dramatts.core.ScriptParser attribute),

22
scenes_titles (dramatts.core.ScriptParser at-

tribute), 22
script_parser (dramatts.core.ProjectManager at-

tribute), 26
ScriptParser (class in dramatts.core), 20
sox_path (dramatts.core.AudioRenderer attribute), 23
speaker_to_render (dra-

matts.core.ProjectManager attribute), 26
start_line (dramatts.core.ScriptParser attribute), 20
start_scene (dramatts.core.ProjectManager at-

tribute), 26
substitutions (dramatts.core.ScriptParser at-

tribute), 20
substiute_text() (dramatts.core.ScriptParser

method), 22

T
tempo (dramatts.voices.VoiceConfig attribute), 29
text (dramatts.core.ScriptParser attribute), 20

36 Index

dramaTTS Documentation

text2wave_path (dramatts.core.AudioRenderer at-
tribute), 23

U
update_parameters() (dra-

matts.voices.VoiceConfig method), 29
use_festival_server (dra-

matts.core.AudioRenderer attribute), 24

V
valid_lines_list (dramatts.core.ScriptParser at-

tribute), 22
VoiceConfig (class in dramatts.voices), 29
voices (dramatts.core.AudioRenderer attribute), 23
volume (dramatts.voices.VoiceConfig attribute), 29

Index 37

	About
	Introduction
	Getting started
	User guide
	API reference

	Links
	Indices and tables
	Index

